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‘AMP’ - Admittance Matrix Program

1. Introduction

Program ‘AMP’ performs a numeric analysis of linear analog circuits in a frequency domain.

In computations Y-matrix techniques are used, yet s-parameters of multi-port sub-circuits can be easily incorporated
into circuit description to facilitate RF circuits analysis.

S-parameters are network description mainly obtained by measurements made by VNA - Vector Network Analyzer.
The purpose of '"AMP' development was to combine easiness of calculations using Y-matrix techniques with accuracy
of RF modeling provided by s-parameters.

10 x]

In:

|Ina1a.in

Qut:

pna1a.uut

Status:

COMPUTING:DL ~ DROGRESS:1 OF 2
COMPUTING:OM  PROGRESS:2 OF 2
COMPUTING:OI. ~ PROGRESS:-1 OF 2
COMPUTING:DM  DROGRESS:2 OF 2
COMPUTING:DL ~ PROGRESS:1 OF 2
COMPUTING:OM  PROGRESS:2 OF 2

Info:

CALCULATING COFFACTORS FOR 50 OF 100 DISCRETE FREQUENCY DOINTS
CALCULATING COFFACTORS FOR 51 OF 100 FREQUENCY FOINIS
CALCULATING COFFACTORS FOR 52 OF 100 FREQUENCY EOINTIS
CALCULATING COFFACTORS FOR 53 OF 100 FREQUENCY EOINTS
CALCULATING COFFACTORS FOR 54 OF 100 FREQUENCY POINTS
CALCULATING COFFACTORS FOR 55 OF 100 FREQUENCY FOINIS
CALCULATING COFFACTORS FOR 56 OF 100 FREQUENCY EOINTIS
CALCULATINEG COFFACTORS FOR 57 OF 100 DISCRETE FREQUENCY EOINTS

wnw. kikowski.com

Fig.1.1.1. Amp window.

AMP is capable of computing transfer functions, their sensitivities or admittance matrix co-factors.

AMP process circuit description file and produces results of analysis in a text format. Input format is similar to Spice.
Schematics entry might be provided by any schematics editor with options to customize Spice netlist generation. In all
presented examples schematics entry is provided be Rimu [1]. Rimu configuration to produce circuit description in
AMP format is described in additional document [4].

AMP was designed to provide flexible interface for external scripting tools, and routinely many tasks are performed as
post-processing of it's results. Therefore AMP can create data files in a format suitable for post-processing.

In presented examples Opus Spice-Nutmeg[2] and Scilab[3] are used as a post-processing scripting tools.

$RAW command can be used to generate data in Nutmeg format.

If a script with project name and .nut extension is found in a working folder, Spice-Nutmeg will be executed with a
<project>.nut script as an input parameter.

$MCAD commands generates additional data for Scilab or any other matlab like tool.

If a script with with project name and .sce extension is found in a working folder, Scilab will be invoked with a
<project>.sce script as an input parameter.

Value modification command ($LET) together with include command ($INC) gives AMP ability to operate in the
feedback loop. An external controlling script may modify input data for next run, thus facilitating optimization or
'Monte-Carlo' analysis.

Options for calculations flow are shown in a figure 1.1.2 below.
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$END A
$LIB DC50.lib
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Inala.nut
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Out:
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Status:

comMpuTING DM
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[CALCULATING COFFACTORS
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CALCULATING COFFACTORS
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Fig.1.1.2. AMP analysis flow with <RIMU> and scripting tools <NUTMEG>,<SCILAB>.
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'Spice-Nutmeg' and 'Scilab’' scripts are optional but have to be prepared individually as part of circuit analysis.

¥ C:\jobs\Amp\examples\ex1\Inala.sce - Notepad++ M ETES
Fle Edit Search View Encodng Llanguage Settings Maco Run Piugine Window ? X
|ooHE . GBI 4BR(de(ak|t:|EEISTEDED|EEE B &=

[Hina1anut a| [Hinatases £

11) |6-dB(s21) |B

plot db(s11)

xlin xlimit -1.8 1.8 ylin ylimit -1.8 1.8 511 unit

length: 881 fines:31  |n:f Col:t Sel:0(0  |Dos\Windows  |[ANSIasUTF8 NS
Fig.1.1.3. Typical scripts for interpreters.

[MATrix LABoratory

It is rather unusual, that both types of scripts are used simultaneously.

Simple tasks are better served by Spice-Nutmeg scripts, more complicated tasks often require more powerful Scilab
scripts.

With proper configuration <Rimu, Amp.ini file> , results of analysis should be available after pressing '"Run
Simulator' icon in Rimu (figure 1.1.4)
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Fig.1.1.4. Plots generated by Nutmeg and Scilab scripts invoked by AMP.
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1.1. AMP configuration file.

AMP configuration file (amp.ini in exe folder) has to be customized to match target system.

IN .in

ouT .out

LIBPATH '\jobs\Amp\lib'

NUTMEG .nut

SPICE "\programs\SpiceOpus\bin\spiceopus.exe'

MCADEXT .sce

MCADEXE 'cscilex.exe -nouserstartup -f'

TICK 300

GUI 1

MCADDIR ' m'

RAWDIR ' r'

IN - default input file extension,

OuT - default output file extension,

LIBPATH - absolute library search path,

NUTMEG - default extension for Nutmeg scripts,

SPICE - absolute path to OPUS Spice

MCADEXT - default extension for Scilab (or any other matlab-like) scripts,
MCADEXE - absolute path to Scilab (actually, this is Scicoslab in this case),
TICK - miliseconds per internal clock tick — change it to 1 when running AMP in optimization loop,
GUI - boolean flag, if 1 GUI is displayed - change it to 0 when running AMP in optimization loop,
MCADDIR - default name of subfolder for files genereated by SMCAD command
RAWDIR - default name of subfolder for files genereated by $SRAW command
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1.2. Circuit description.

Circuit description is similar to the standard Spice syntax, yet with some notable exceptions.
Circuit specification requires sequential upward node numbering from O for the ground. Rimu can easily be adopted to
automate this task. AMP analyzes circuit models, which are build using the following components:

Sources:
\% voltage source
I current source
Probes:
PU voltage probe,
PI current probe,

Pz impedance probe

PTU  transfer function probe TF = U(a,b)/U(c,d)
PTI transfer function probe TF = I(a,b)/I(c,d)
PTN  transfer function probe TF = I(a,b)/U(c,d)
PTM  transfer function probe TF = U(a,b)/I(c,d)

Parts:

ideal operational amplifier

multiport sub-network defined by a matrix file
voltage controlled current source

current controlled current source

voltage controlled voltage source

current controlled voltage source

admittance

capacitor

coil

mutual inductance coupling between two coils
resistor

impedance

lossless transmission line

sub-circuit defined by list of other parts

XANFAROCOKIZTHTQOWE >

Parts and sources are identified by the first letter.
First letter case is irrelevant.
Probes use two PU, PI, PZ or three letters for identifications PTU, PTI, PTM, PTN.
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va ia pa pa pa
(“\ fum fﬁ?\ fi-] ( Z )
V1 ./_l\,/ 11 \\/D’/ PU 1\__./ PI1 Ny P7 1\.___/
vb ib pb pb pb
ni
ab A1 nec : na
[ > S
ac p nd nb
R1 L1 C1 Y1 Z1
{1 ™ 1 {1 ]
ra rb la b ca ch Ya yb Za zb
E1 F1
ec ea fc fa
Ol @
ed eb fd b
G1 H1
gc ga he ha
el @
gd _ gb hd _ hb

Fig.1.2.1. Sources, basic probes and parts in Rimu schematics

1.2.1. Specification of sources and probes.

Sources:
V - Voltage Source
Vxxx va vb

I - Current Source
Ixxx ia ib

WARNING:

For current source positive current flows from ib to ia, i.e. ia node is a source (not a sink like in SPICE). Thus, this
convention is different than in SPICE.

Sources have no value, because together with probes they determine the form of calculated transfer function TF.
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P — Probes (voltage, current, impedance)

PUxx pa pb

U(pa,pb)=V(pa)-V(pb) | with a,b open I(pa,pb)=0
PIxx pa pb

I(pa,pb), positive current is flowing from pa to pb, with pa,pb shorted
PZxx pa pb

U(pa,pb)/I(pa,pb) - impedance probe - requires no source
Basic voltage and current probes PU, PI determine the nominator of transfer function. This means, that for each
individual source (Vx,Ix) AMP calculates transfer function TF with nominator determined by a type of the probe.
Thus, for each voltage source Vx, transfer function is TF = U(pa,pb)/Vx or TF = I(pa,pb)/Vx, and for each current
source Ix, transfer function is TF = U(pa,pb)/Ix or TF = I(pa,pb)/Ix depending on the type of probe and source.
Transfer functions TF are calculated according to superposition theorem, i.e. all irrelevant sources are in off state
(voltage sources nodes are short-circuit Vy=0, current sources nodes are open Iy=0).

PT — Transfer function probes (voltage, current, impedance)

PTU pa pb pc pd

transfer function probe TF = U(a,b)/U(c,d)
PTI pa pb pc pd

transfer function probe TF = 1(a,b)/I(c,d)
PTN pa pb pc pd

transfer function probe TF = I(a,b)/U(c,d)
PTM pa pb pc pd

transfer function probe TF = U(a,b)/I(c,d)

1.2.2. Basic parts specification.

A — Amp (ideal):
Axxx aa ab ac
Axxx aa ab ac ad

E - VCVS:
Exxx ea eb ec ed Evalue
F - CCCS:

Fxxx fa fb fc fd Fvalue
control nodes fc,fd are short-circuit, positive current flow is from fc to fd

G - VCCS:
Gxxx ga gb gc gd Gvalue
H-CCVS:

Hxxx ha hb hc hd Hvalue
control nodes hc,hd are short-circuit, positive current flow is from hc to hd
N — Transformer (ideal) :
Nxxx na nb nc nd Nvalue
U(na,nb)=Nvalue*U(nc,nd), i(nc,nd)= - Nvalue*i(na,nb) (current sinking into the a is sourced by c)
R — Resistor
Rxxx ra rb Rvalue
C — Capacitor:
Cxxx ca cb Cvalue
L — Inductor:
ILxxx la 1lb Lvalue
K — Inductive coupling between coils LX LY — nodes (1a) of coupled coils have positive magnetic polarity:
Kxy LX LY Kvalue
T - Transmssion line, lossless with characteristics impedance Zo and delay TD
Txxx ta tb tc Zo TD
Y - Admitance
Yname ya yb RE(Yvalue) IM(Yvalue)
Z - Impedance
Zname za zb RE (Zvalue) IM(Zvalue)

10
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1.2.3. Multiport network specification.

B — Block — multiport network:
Bxxx nbl nb2 [nb3 nb4..... ] nb0 MatrixName
SMAT MatrixType Matrixname MatrixFileName

Multiport network specification consist of two parts. First part is a line with B type component declaration together with
nodes and matrix name definition. First node nb1 corresponds to portl, second node nb2 to port2, and so on. Last node
nb0 is common node. Thus, 1 port device requires declaration with 2 nodes, 2 port — 3 nodes, and so on.

Second part is line with SMAT command, which for a given matrix name defines matrix type and a file name.

Two matrix types are supported; SxP s-parameters in Touchstone format or YRI - Y-matrix in real, imaginary format.
For Touchstone type SxP, number of ports is indicated by x in the middle of the type. Currently AMP accepts
Touchstone files for network with up to 9 ports [S1P ... S9P] in all S formats (Y,Z are not supported).

YRI file type should include for each frequency [in Hz] and all matrix elements [in S=Q"(-1)] row-wise in a single line
separated with spaces like in: <f Re{yll} Im{yll} Re{yl2} Im{yl2} Re{y21} Im{y21} Re{y22} Im{y22} > .

£% Fle Edt View Draw Object Library Tools Window Help _18] x|
DER = o---[m fQED-emaslc ey
IAola|«#d |\ v\ 0000 (2 e=2|%%nn

| A L N L =
Fies | DesignView | DRC | s —
B Deskiop =] ]
L Libl\zwes ] B1 YMAT B2 S1P
- mp |
i i ] P e
e A
& b 2] B9 ST
MySpice i B4
Spice - g -
B S;mbn\x - B3 s2P YBGA +
@ b 3
i@ an00 b b [~
R = - i
D> A2 Amp D B3I amp ]
D> 421 Amp 83500 4
D 81_mp D B4_amp 1
D82 20 D B4 D00 ] B8 L BEXY LEONH_shunt
D82 Amp D B22. A - *%H( >H1'—;_\I—x
D> B2_BT_CE D C_Amp 5 @ B5 B6
D62 Coer TE_Amp ]
By D fmn ] C10pF_ser  L10nH_ser s
D B2_Shunt D G_bmp ]
DB TL - H_bmp 6 B10 S3P Bi1  xCM 813 B12 MAAM
O | CTL
ez B i =
1+ ] J< J<
| 57

=]
e

Ready [T+ =87: 531 i I

Fig.1.2.1. Example multiport B-parts.

Example 1:

B2 1 2 0 AH2

SMAT S2P AH2 ah2.s2p
Example 2:

Bl 4 5 0 YBGA

B3 2 3 0 YBGA

SMAT YRI YBGA ybga 1.yri

Internally, s-parameters are converted into Y-matrix format and linearly interpolated for frequencies specified for
analysis. This works well for most practical cases, but in one notable case it always fails. This case is, 2 port RLC part
characterization in shunt configuration. Y-matrix does not exist for shunt configuration and AMP will report error
during s-parameters conversion. Since RLC parts are in essence one port devices, workaround is relatively easy — it is
a conversion to S1P parameters with the help of external script (see stability analysis example).

Second exception is AMP don't understand noise data embedded in Touchstone file. Therefore, noise data can't be
combined with s-parameters in a single file. In case of noise analysis, noise data has to be moved to a separate file (see
noise analysis example).

11
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1.2.4. Macro-models - sub-circuits specification

X — Macromodel
X xa xb xc Xmacro
SLIB FileNameWithXmacroDefinition.lib

Example:
X1 2 1 2 3 4 DC50
SLIB DC50.1ib

<DC50.1ib> is a file name with macromodel definition:

# DC50 Po Pi Vb Va

A 1 2 Po Pi

Rb 1 Pi 50.0
Ra 2 Po 50.0
Ab Vb 1 Vb

Aa Va 2 Va

##

Macromodels is a sub-circuit description. Macro-models can be instantianted as X parts. The last parameter in X part
declaration is a name of macro model.

The file with macro-model definition has to be declared with $LIB command.

The definition starts with single hash # sign, and ends with a line with two hashes - ##.

# Xmacro Nodel Node2 Node3

<MACROMODEL BODY>
##

The first parameter in macro definition is a name of macro-model (DC50 in the example).
Next parameters are symbolic external nodes (Po Pi Vb Va in the example).
Internal nodes has to be numbered sequentially upward starting from 1, 0 is the ground node.

The macro model definition can instantiate all other parts.

Macro-models are hierarchical i.e. a macro-model definition can instantiate other macro-model.

12
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1.2.5. Extended part specification.

Models of RLC parts — models parameters are defined in $MOD command
Cxxx ca cb CValue MOD CModelName
Lxxx la lb LValue MOD LModelName
Rxxx ra rb RValue MOD RModelName

Example:
Cl 1 2 10p MOD M0402C100p

Ll 2 3 10n MOD M0402L10n
R1 3 0 100 MOD MO0402R100

Parameters — parts declared as parameters have value assigned by $PAR command during sweep analysis
Cxxx ca cb PAR CVarName
Lxxx la lb PAR LVarName
Rxxx ra rb PAR RVarName
Yname ya yb PAR YVarName
Zname za zb PAR ZVarName
Gxxx ga gb gc gd PAR GvarName

Example:
Cl 1 2 PAR Cl par
L1 2 3 PAR L1 par
R1 3 0 PAR Rl par

Variable — variable parts with value assigned by $VAR command (mostly used internaly)
Cxxx ca cb VAR CVarName
Lxxx la lb VAR LVarName
Rxxx ra rb VAR RVarName
Yname ya yb VAR zref
Zname za zb VAR zref
Gxxx ga gb gc gd VAR GvarName

Other specifications
Cname ca cb TUN CTunName
Lname la 1lb TUN LTunName
Rname ra rb TUN RTunName
Gname ga gb gc gd TUN GTunName
Gname ga gb gc gd GEN
Rname ra rb GEN
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‘AMP’ - Admittance Matrix Program

1.3. Commands.

SLIB — load library file command
SLIB MyMacroModel.lib
SLIB MyNewLib/WithGreatModels/Inside.lib

$SMOD — model declaration - to be used with parts specified as MOD
SMOD ModelType ModelName ModelParametrl ModelParametr2
SMOD FQ ModelName ResonanceFrequency EquivalentQualityFactor
Example:
SMOD FQ M0402C100p 1.0G 3.3

$SMAT - matrix declaration, can implicitly define frequencies
SMAT MatrixType MatrixName MatrixFileName
Examples:
SMAT S2P AH2 ah2.s2p
SMAT YRI YBGA ybga 1.yri

$INC - include file command
SINC FileCommandsOnly.ext

SFREQ — define frequencies, can only be skipped only when $SMAT is present
SFREQ LIST F1 F2 F3...
SFREQ LIN Fstart Fstop Fstep
SFREQ LOG Fstart Fstop
SFREQ FILE FileName.ext

$SENS — execute sensitivity analysis
$SENS

SRUN - run a single task, each task requires implicit ($SMAT) or explicit (SFRQ) frequency declaration
SRUN

SMCAD - create text file in Matlab friendly format, VAL option to creates files with part values
$MCAD
SMCAD VAL

SRAW - create text file in Nutmeg format
SRAW

SLET - assign new value to exisiting part
SLET PartName NewValue

$TN — assign name to the task
STN TaskName

$PAR - assign values by parametric sweep
SPAR parname LIST Pl P2 P3
SPAR parname CLIST Re{Pl} Im{Pl} Re{P2} Im{P2} Re{P3} Im{P3}
SPAR parname LIN Pstart Pstop Pstep
SPAR parname LOG Pstart Pstop
SPAR parname FILE FileName.ext
SPAR parname CFILE ComplexFileName.ext
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‘AMP’ - Admittance Matrix Program

$SFOR - printout format (default format is MP RI)

SFOR
SFOR
SFOR
SFOR
SFOR
SFOR
SFOR

dB
MP
RI
dB MP
dB RI
MP RI

dB MP RI

STRACE - printout internal data
STRACE

$TRACE - define transfer function by ratio of coffactors

STF TFName

Examples:

STF KU1=DL (1+0

DL (LCoffactor spec)/DM(MCoffactor spec)

(2+0) /DM (140) (1+0)

)
STF KU1=DL(1+0) (2+0), (3+0) (3+0) /DM (1+0) (1+0), (3+0) (3+0)

STF Z1[V1/I1]

DL (14+0) (1+0) /DM (0+0) (0+0)

$VAR — define values of variables

SVAR
SVAR
SVAR
SVAR
SVAR
SVAR

varname
varname
varname
varname
varname
varname

LIST V1 v2 V3

CLIST Re{V1l} Im{V1l} Re{V2} Im{V2} Re{V3} Im{V3}
LIN Pstart Pstop Pstep

LOG Pstart Pstop

FILE FileName.ext

CFILE FileName.ext
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1.4. Circuit analysis.

Sources together with probes determine the form of calculated transfer function TF.

For each individual source (Vx,Ix) AMP calculates transfer function TF with nominator determined by a type of the
probe.

Thus, for each voltage source Vx, transfer function is TF = U(pa,pb)/Vx or TF = I(pa,pb)/Vx,

and for each current source Ix, transfer function is TF = U(pa,pb)/Ix or TF = I(pa,pb)/Ix depending on the type of

probe and source.

Transfer functions TF are calculated according to superposition theorem, i.e. all irrelevant sources (Vy,ly) are in off
state (voltage sources nodes are short-circuit Vy=0, current sources nodes are open Iy=0).

For file with simple circuit including one voltage source V1 and one voltage probe PU2 <ex(a.in>:

* Simple voltage divider
R1 1 2 50
0 50
0

0

SEND

SFREQ LIST O
SRUN

AMP calculates transfer function K U2 V1 =U2/V1 <ex0a.out>

* Simple voltage divider
R1 1 2 50
R2 2 0 50
V1 1 0
PU2 2 O
SEND
SFREQ LIST 0
SRUN
kA hhkhkhkhkhhkhdrkhhkkhkhkkhkhkhkhkhkhkdkhkhxkhkkhkKh k% AMP 8 D kA hhkhkhkhkkhkhkhhkhkhkkhhkkhkhkhkhkhkhkdkhkhxkhhkkhkKh*x*%x
DATE:1/1/2015 B
TIME:20:28:08
KK AR A KR A KA A A A AR AR AN A A A AR AR AR ARk K AMP 8 D KK AR A KR A KA A A A AR AR AN A A A AR AR AR ARk K
RESULTS OF TASK:1.0.1 NO_NAME
TF=K U2 V1 FREQ= 0.0000000E+0000 OMEGA= 0.0000000E+0000
|TF|= 0.50000000 deg (TF) = 0.00000

Re (TF)= 5.0000000E-0001 Im(TF)= 0.0000000E+0000
TIME:20:28:08
R IR b b b b b b b b b b b b b b b b b b ab b b b b b b b b 4 AMP 8 D R R b b b b b b b b b b b b b b b b b b I b ab b b b b b b 4
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When two commands SRAW and $MCAD VAL with $TN task name are added to the input file <exOb.in>:

* Simple voltage divider

R1 1 2 50
R2 2 0 50
V1 1 O

PU2 2 O

SEND

SRAW; $MCAD; $FREQ LIST 0; S$TN TASK{KU=U2/V1}; S$RUN

Output file looks virtually the same <exOb.out>:

* Simple voltage divider
R1 1 2 50

R2 0 50

0

0

SEND

SMCAD VAL

SRAW

SFREQ LIST O

STN TASK{KU=U2/V1}

SRUN

R S e b b b b b b I I 2 b b b b b b S I b b b b b g MP 8 D R e I b b b b b b I I 2 b b b b b b S I b b b b b g
DATE:1/1/2015

TIME:20:57:50

KR KKK KKK KKK K Kk Kk Kk Kk Kk Kk Kk Kk Kk ok oKk ok ok ok ok ok kK AMP 8 D KH KKK KKK KKK K Kk Kk Kk Kk Kk Kk Kk Kk Kk oKk ok ok ok ok ok ok kK
RESULTS OF TASK:1.0.1 TASK{KU=U2/V1}
TF=K U2 V1 FREQ= 0.0000000E+0000 OMEGA= 0.0000000E+0000
|TF | = 0.50000000 deg (TF) = 0.00000
Re (TF)= 5.0000000E-0001 Im(TF)= 0.0000000E+0000

TIME:20:57:50

KAKAIKAIAAA I A XK AR KA XA AR A A XA A XA %K AMP 8 D KAKAIKAIAAA I AR KA RN AR A AR A AR A A XA kK

Yet in subfolders _m/ and _r/ few new are created.
< m/ex0b.m0> is a directory file with references to data file :

TASK:1.0.1 TASK{KU=U2/V1}

FILE: ex0b.ml

DATANAME: K U2 V1

DATA: [1..1,1..3][F,RE(TF),IM(TF)]
EOF

< m/ex0b.m1> is data file with TF : {FREQUENCY, RE(TF), IM(TF)

0.00000000000000E+0000 5.00000000000000E-0001 0.00000000000000E+0000

< m/ex0b.v0> is a directory file with references to data file < m/exOb.v1>

TASK:1.0.1 TASK{KU=U2/V1}
FILE: ex0b.vl

EOF

< m/exOb.v1>

R1 = 5.00000000000000E+0001;
R2 = 5.00000000000000E+0001;
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‘AMP’

< r/ex0b.r1> is a Nutmeg file:

- Admittance Matrix Program

Title: Amp AC analysis results
Date:1/1/2015 at 20:57:50
Plotname: AC Analysis

5.00000000000000E-0001,

for Tasks

(1.0.* ) :TASK{KU=U2/V1}

Flags: complex
Sckt. naming: from bottom to top
No. Variables: 2
No. Points: 1
Variables:
0 frequency frequency
1 K U2 V1 notype
Values:
0 0.00000000000000E+0000, 0.00000000000000E+0000

0.00000000000000E+0000

When $SENS command is added to the input file <ex0c.in>:

* Simple voltage divider

R1 1 2 50

R2 2 0 50

V1 1 0

PU2 2 O

SEND

$SENS; S$RAW; S$MCAD; S$FREQ LIST

0; STN TASK{KU=U2/V1}; SRUN

AMP calculates transfer function K U2 V1 =

U2/V1 with sensitivities <exOc.out>

* Simple voltage divider
R1 50
R2 50

$SENS

SMCAD VAL

SRAW

SFREQ LIST 0

STN TASK{KU=U2/V1}
SRUN

LR IR R I S b I Sb b I S b S Sb S S Sb 2b I Sb db I Sb 2b I S 4

DATE:1/1/2015
TIME:21:16:53

KKK IAKAIAKAA R AA KA AN AXA A AR A A XA A XK k%

TF=K U2 V1
| TF| = 0.50000000
Re (TF)= 5.0000000E-0001
R IR b b b b b b b b b b b b b b b b b b ab b b b b b b b b 4
TF SENS OF [R1]
F= 0.0000000E+0000
TF SENS OF [R2]
F= 0.0000000E+0000

KAKAIKAIAAA I AR KA XK AR A AR A A XA A XA kK

RE[S]

TIME:21:16:53

KKK IAKAIAKAA R AA KA AN AXA A AR A A XA A XK k%

=-5.0000000E-0001

RE[S]= 5.0000000E-0001

LR IR R I S b I Sb b I S b S Sb S db b S b Sb 2b I S 2b 3 S 4

AMP 8 D

KAKAKAKAIAKAA I A A KA AR AXA A A XA A XA A XAk K

AMP 8 D

RESULTS OF TASK:1.0.1 TASK{KU=U2/V1}
FREQ= 0.0000000E+0000

OMEGA= 0.0000000E+0000
deg (TF) = 0.00000
Im(TF)= 0.0000000E+0000

AMP 8 D KAAKRKAA I AA KA XA AR A AR A AR A A XA A XA KK

IM[S]= 0.0000000E+0000

IM[S]=-0.0000000E+0000

KAKAIKAA I AA I AR KA XK AR A AR A A XA A XA %K

AMP 8 D

KAKAKAKAIAKAA I A A KA AR AXA A A XA A XA A XAk K

AMP 8 D
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‘AMP’ - Admittance Matrix Program

< m/ex0c.m0> is a directory file with references to data files :

TASK:1.0.1 TASK{KU=U2/V1}

FILE: exOc.ml

DATANAME: K U2 V1

DATA: [1..1,1..3][F,RE(TF),IM(TF)]

EOF

TASK:1.0.1 TASK{KU=U2/V1l}

FILE: ex0c.m2

DATANAME: S K U2 V1 Rl

DATA: [1..1,1..3]1[F,RE(S(TF)),IM(S(TF))]
EOF

TASK:1.0.1 TASK{KU=U2/V1}

FILE: ex0Oc.m3

DATANAME: S K U2 V1 R2

DATA: [1..1,1..3][F,RE(S(TF)),IM(S(TF))]
EOF

< m/ex0b.m1> is data file with TF : {FREQUENCY, RE(TF), IM(TF)

| 0.00000000000000E+0000 5.00000000000000E-0001 0.00000000000000E+0000

< m/ex0b.m2> is data file with TF : {FREQUENCY, RE(S(TF)), IM(S(TF))

| 0.00000000000000E+0000 -5.00000000000000E-0001 0.00000000000000E+0000

< m/ex0b.m3> is data file with TF : {FREQUENCY, RE(S(TF)), IM(S(TF))

| 0.00000000000000E+0000 5.00000000000000E-0001 -0.00000000000000E+0000

< r/ex0c.r1> is a Nutmeg file

Title: Amp AC analysis results for Tasks = (1.0.* ) :TASK{KU=U2/V1}
Date:1/1/2015 at 21:16:53

Plotname: AC Analysis

Flags: complex

Sckt. naming: from bottom to top

No. Variables: 4

No. Points: 1

Variables:
0 frequency frequency
1 K U2 vl notype
2 S K U2 V1 R1 notype
3 S K U2 V1 R2 notype
Values:
0 0.00000000000000E+0000, 0.00000000000000E+0000

5.00000000000000E-0001, 0.00000000000000E+0000
-5.00000000000000E-0001, 0.00000000000000E+0000
5.00000000000000E-0001,-0.00000000000000E+0000
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2. Examples.

Examplel - Lna

Summary: s-parameters, ideal directional coupler, verification of calculated against actual s-parameters.
Example2 - Active splitter

Summary: s-parameters test network, sweep of s-parameter for a model, sweep of part values..
Example3 - Stability analysis.

Summary: stability factors, stability circles, frequency models.

Example4 - Coupled transmission lines

Summary: differential line, coupled line modeling, even-odd modes, decoupling transformations.
Example5 - NF for cascade of LNA and tuner.

Summary: NF - noise figure, noise modeling of active device, noise model of cascade.
Example6 - RF passive filter optimization.

Summary: LC filter optimization , pattern search (Hooke-Jeeves algorithm), preferred numbers, Monte Carlo,
sensitivities.
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‘AMP’ - Admittance Matrix Program

2.1. LNA.

Summary: s-parameters, ideal directional coupler, verification of calculated against actual s-parameters.
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The Inal.sch circuit consists of two ideal directional couplers and LNA in 'characterization' configuration.

After pressing '"Run Simulator' — circuit description file Inal.in is created and AMP is executed. AMP in turn invokes
spice-opus nutmeg and scilab script to post process and display results.
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There are eight s-parameters models for different bias current, ranging
from: m625633a.s2p — for bias =10mA
to: m625633h.s2p — for bias =70mA.
By changing reference to the s-parameter model, new results can be easily calculated as shown below in figure 2.1.3.
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To verify results of analysis scilab ex1.sce script is used. It is located in sce/ folder. Scripts reads s-parameters data and

compares them with data files produced by AMP.
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Data are aligned, as expected.
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Fig2.1.6. Calculated versus actual for m625633h.s2p model (bias = 70mA).
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2.2. Active splitter.

Summary: s-parameters test network, sweep of s-parameter for a model, sweep of part values.
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Fig2.2.1. Active splitter in 4 port characterization configuration <<act_split.sch>>.

Alternate method of calculating s-parameters is used in the DUT (device under test) test network. DUT is an active
splitter with 1 input and 3 outputs. DUT is driven from multiple sources with internal impedance equal with reference
impedance Ro=75 for the ports. DUT's s-parameters are derived from voltage gains.
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Fig2.2.2. Few of active splitter s-parameters calculated and plotted by <<act_split.nut>> script.
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Calculated and actual s-parameters might be compared by using scilab script.
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Fig2.2.3. Active splitter s-parameters compared with actual by scilab <<sce/ex2.sce>> script .

In order to compare two s-parameters of two different devices, two runs of AMP are required. In the next example,
simplified characterization circuit is used, which allows user to calculate the sub-set of s-parameters, namely s11, s21,
s31, s41. In the first run active splitter model is defined by MAAMSE820.s4p file, in the second run by MAAMSE822.s4p.
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Fig2.2.4. Configuration for comparing s-parameters of two devices <<act split models.sch>> .
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Fig2.2.5 Some of active splitter s-parameters compared and plotted by <<act_split models.nut>> script.

Sometimes, simple sweep of parameters is required. Next example shows how this might be done.

Two parameters are swept, values of capacitor C1 and coil L1. When $PAR command is used, all lists are stepped
simultaneously, therefore same number of lists elements is required. The first run is performed for C1=100nF,
L1=0.1pH, second for C1=56pF, L1=1.0nH, third for C1=56pF, L1=3.3nH, and so on.

S-parameters are calculated for ports identified by voltage probe nodes. Since there are 2 probes and 1 source, only sl1
and s41 are calculated.
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Fig2.2.6. Active splitter with two parameters sweeping <<act_split models.sch>>.
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Fig2.2.7 s11,s41 with parameters sweep plotted by <<act split params.nut>> script.

AMP produces separate raw data file for each run. Each analysis is identified by ac prefix in 'nutmeg' script. So, first
run for C1=100nF, L1=0.1pH is identified as acl, second for C1=56pF, L1=1.0nH as ac2, third for C1=56pF,
L1=3.3nH as ac3, an so on. Colors are declared inside 'nutmeg' script. First run (acl) is plotted as red line, second
(ac2) as green, third (ac3) as blue, fourth (ac4) as magenta, fifth (ac5) as yellow, sixth (ac6) as cyan.
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2.3. Stability analysis.

Summary: stability factors, stability circles, frequency models.

Model of single transistor gain stage is checked to be unconditionally stable. The transistor is linear 'hybrid pi' model
with parameters calculated for Ic=30mA. The analysis includes Rollett's stability factors (K,B1) and stability circles.
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Fig2.3.1. Gain stage in 4 port characterization configuration <<ex3bl.sch>>.
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Fig2.3.2. Stability analysis for gain stage <<ex3bl.nut>>.

28



‘AMP’ - Admittance Matrix Program

For clarity only 3 stability circles, for frequency 0.1GHz, 1.5GHz, 3.0GHz are plotted, yet the variation of stability
circle radius (RS,RL) and distance of the center (CS,CL) from the origin of smith chart is shown in graphs adjacent to
stability circles plots.

Rollet's stability criteria indicate, that amplifier might be potentially unstable in the range between 1.4GHz and 1.7GHz
and above 2.6GHz. The nature of the problem is better understood by inspection of load and source stability circles.
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v, Imag
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Curve: <space> @ 5

Fig2.3.3. Source stability circles for ex3b1 model.

Indeed, for and I's = |1|e(j240°) at 1.5GHz (green circle ) and at 3.0GHz (blue circle) , output reflection coefficient is
greater than unity |Lou >1.
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Fig2.3.4. Stability load circles for ex3bl model.

Moreover, for I'L = |1|e(+j45°) at 1.5GHz (green circle), and I'L= |1|e(+j110°) at 3.0GHz (blue circle) input reflection
coefficient is greater than unity |'inp| >1.
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In order to avoid effects of unfriendly terminations, serial resistors ri=10 Ohm, ro=10 Ohm were added to input and
output port.
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Fig2.3.5. Gain stage with 100hm serial resistors <<ex3b2.sch>>.

ions, indicating unconditional stability.

With added ri,ro resistors, stability factors and stability circles are in safe reg
i =181x|
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Fig2.3.6. Stability analysis for gain stage with serial resistors <<ex3b2.nut>>.
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The solution seems effective, till the point the same analysis is applied to the enhanced model, with transistor and coils
modeled by s-parameters.
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The potential problem around 1.5GHz is revealed.
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Enhanced model indicates, that in order to assure unconditional stability, values of serial resistors have to be increased

even further.
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2.4. Coupled transmission lines

- Admittance Matrix Program

Summary: differential line, coupled line modeling, even-odd modes, decoupling transformations.

The decoupling transformation technique is used to decompose coupled lines into two uncoupled lines.

To estimate parameters of differential transmission line, we use mdtlc.exe - a free 2D impedance calculator, which in
turn uses atlc. — free arbitrary transmission line calculator.
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In principle, the lossless symmetric differential line might be characterized by four parameters: differential
characteristics impedance Z_diff and delay Delay _odd and common characteristics impedance Z_comm and delay
Delay_even.

The internal schematics of coupled lines macro model is shown in figures 4.2.3, 4.2.4. Coupled lines are decomposed
into two uncoupled lines: T1 - for even and T2- for odd mode and two even-odd mode converters XS1, XS2.
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The internal schematic of even-odd mode converter is shown in figure 4.2.4.
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Fig2.4.4. Macro model of even-odd mode converter.
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As shown in figure 2.4.5 coupled lines model is in test circuit to verify s-parameters for differential and common mode.
It is worth nothing, that for the test circuit reference impedance is 100 Ohm for differential signal and 25 Ohm for
common mode signals.
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Fig.2.4.5. Characterization of coupled transmission lines.

Nutmeg script calculates s11, s21 for differential and common signals and displays them together with theoretical
values. As seen in figure 2.4.6, only one color of plot is visible, meaning that, values calculated for the model match

theoretical.
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2.5. NF for cascade of LNA and tuner.

Summary: noise modeling, noise model of cascade, NF - noise figure, impact of source impedance on NF.

The noise model of RF front-end shown in figure 2.5.1. consists of tuner, LNA and transmission line X1 plus some
input coupling components . Tuner input impedance characterized by 2 port s-parameter set (B1) and voltage V., and
current I noise sources. LNA is characterized by 3 port s-parameter set (B2) and voltage Vi, and current I, noise
sources. Transmission line model is the same as in the example 2.4.
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Fig.2.5.1. Noise model of LNA and tuner cascade.

To calculate the noise figure NF of the cascade, the ratio of total noise to noise due to the source resistance has to be
evaluated at selected reference port. In the example differential input of the tuner B1 is selected as reference port for
noise analysis and RMS value of voltage noise is 'measured' by voltage probe PUL.

Noise sources can be referenced to tuner port as equivalent Thevenin's (voltage) or Norton's (current) sources. For this
reason, NF does not depend on loading impedance of reference ports, and formally tuner impedance is redundant in this
analysis. Yet, since the result of NF analysis does not depend on reference port load impedance, open, short or any load
is equivalent as long methodology is consistent. It simply seems more natural to perform the analysis with reference
port loaded as in actual circuit, rather than perform calculations for open or short circuit.

Noise characterization embedded in 'Touchstone' file is represented by 3 parameters NFmin, I'ope, Ra for each frequency.
NFuin is minimum noise figure, achievable for optimal complex source reflection coefficient (mag(opt), arg(Lopt)).
Equivalent noise resistance R, represents the voltage noise noise contribution.

Native 'Touchstone' noise characterization set is not convenient for circuit analysis and AMP does not accept noise
data embedded in s-parameters files.

Therefore, to perform noise analysis, noise data has to be moved to separate files (in the example files have *.noi
extension) and processed along with transfer functions results by dedicated scilab script.

From circuit analysis perspective, noise characterization parameters should directly describe noise sources — as in
S.w=4*kTR1 for voltage power density of source resistance R1. Accordingly, active devices might be fully
characterized by power noise density S., for equivalent voltage noise, power noise density S; for equivalent current
noise density, and complex correlation admittance Ye=Ge+jBe between voltage and current sources.

The procedure of converting '"Touchstone' noise parameters to noise source characterization and calculation of power
noise density at voltage probe due to Ina, tuner, Ina, and source resistance R1 is performed by scilab script.

Both for LNA and tuner scilab script reads NFmin, I'opt, Rn noise parameters from '*.nofi' files and converts them into
noise source parameters Sy, Si, Y€.
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Fig.2.5.2. Results of noise analysis for model in figure 2.5.1.

AMP calculates all required transfer function from noise sources to voltage probe PU; at noise reference port. Namely
voltage-voltage transfer functions K1=U¢/V,, K2=U{/V., K3=U{/V., and current-voltage transfer functions M1=U/I,..,
M2=U¢I,. Values of transfer functions are plotted by nutmeg script. Scilab script reads K1,K2,K3 and M1,M2 and
using noise source parameters (Sw, Sii, Y¢) calculates voltage noise density for voltage probe PUL.
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Fig.2.5.3. Noise figure NF analysis.
First graph shows LNA contribution, second tuner contribution to total NF [dB] shown in third graph. Red plot

represent accumulated NF[dB] value due to current noise(blue), voltage noise (green) and correlation between the them
(cyan).
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In order to better understand the impact of transmission line on degradation of noise parameters in upper band the
model without transmission line was analyzed.
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Fig.2.5.4. Noise model of LNA and tuner cascade without transmission line.

Without impedance transformation effect of transmission line, from noise perspective, tuner is much better matched
with LNA . Comparing with previous case, the maximum noise figure is below 9dB and the difference due to
transmission line is almost 2dB in the upper band.
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Fig.2.5.5. Results for model of LNA and tuner cascade without transmission line.
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Since the effect of transmission line was considered to be significant, the actual s-parameters of the line for differential
mode were measured and put into the noise model as B3. Measurement technique allowed only for 2 port
characterization in differential mode, therefore two ideal baluns n1,n2 provide conversion between single ended s-
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Fig.2.5.6. LNA and tuner cascade with measured differential s-parameters of the transmission line.

With actual parameters of transmission line, the maximum NF is 10dB and degradation due to relatively long
connection between tuner and LNA is about 1dB.
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Fig.2.5.7. Results for LNA and tuner cascade with measured differential s-parameters of the transmission line.
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2.6. RF passive filter optimization.

Summary: LC filter optimization , pattern search (Hooke-Jeeves algorithm), preferred numbers, Monte Carlo,
sensitivities.

Let's assume, that the target for the passive filter transfer function is:
— low pass band 900MHz, with pass band ripple < 1dB,
— stop-band 2400MHz, with attenuation > 80dB
— input return loss < 6dB

The design starts with 7" order 1GHz, 1dB ripples low pass Chebyshev approximation and reference impedance of 75
Ohms. The ideal filter is shown in figure 2.6.1.
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Fig.2.6.1. Ideal filter characteristics.

However, there is a problem with this mathematically elegant solution. The filter build with real discrete parts will
hardly perform as expected. The basic reason being, that for this frequency range, discrete coil's and capacitor's
characteristics diverge significantly from an ideal parts.

The models of actual discrete part may vary significantly in the level of accuracy and complexity.

The simplest model used by AMP is FQ model, next in hierarchy are different levels of X macro-models, and most
complex and most accurate are s-parameters models.

FQ model replaces each FQ MOD type part with equivalent RLC model. Two parameters of FQ model are F-resonant
frequency, and Q-equivalent quality factor.

For a given F,Q values, AMP calculates values of two parasitic for each device. For coil L, it is a parasitic capacitance
and resistance and for capacitance C, equivalent series resistance and inductance. However, FQ model does not
introduce frequency dependent component values, and as such, can be accurate in a limited frequency band.

The first thing to do with a ideal filter, is to make a feasibility study, with parts modeled as FQ models with realistic
parameters to approximate frequency response similar of the actual devices used in the design.

This step is illustrated in figures 2.6.2, 2.6.3, for low-Q, and high-Q coils, respectively.

Base values of parts has not been changed, yet ideal parts are replaced by FQ models.
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In figures 2.6.2, 2.6.3 green plot represents ideal circuit response, blue plot circuit response of the circuit with FQ
models. With low-Q coils there is a drop at the end of pass-band - S21 value is -16dB at 900MHz.
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Fig.2.6.2. Filter characteristics for FQ models — low Q coils.

For high-Q coils there is also drop at the end of pass-band, S21 value is -9.5dB at 900MHz, slightly better but still
quite depressing. Clearly, with so significant errors, other approach to filter design is needed.
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Fig.2.6.3. Filter characteristics for FQ models — high Q coils.
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In AMP any declared part values can be modified by SLET command. With $SLET command it is relatively easy to
implement optimization procedure written as a script for external interpreter - a scilab in this case.
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In case of optimization runs, schematic editor is used only for preparation of input file, as AMP is invoked by running
script. In order to prepare the circuit for a optimization runs, the standard description has to be modified.
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Fig.2.6.4. Circuit description for optimization runs.

In principle, scilab script does not read filter circuit description. Script invokes AMP, reads files with results of
analysis and generates new version of a file included by $SINC command for a next run.

To get started, scripts invokes AMP with ideal filter circuit. Part values read from ideal filter are used to create FQ
models for initial optimization run. Other scenarios are possible for initialization of optimization, yet the one with ideal
filter is actually used in the examples. SLET commands changes declared part values. FQ models are updated
according to models build into the script.

$MOD FQ MC1 3.0375E+009 20.8242
SLET Cl 4.6E-012

$MOD FQ MC2 2.34E+009 22.1586
SLET C2 6.56E-012

$MOD FQ MC3 2.34E+009 22.1586
$LET C3 6.56E-012

$MOD FQ MC4 3.0375E+009 20.8242
SLET C4 4.6E-012

$MOD FQ ML1 5.78333E+009 72.129
SLET L1 1.33E-008

$MOD FQ ML2 5.66667E+009 71.3991
SLET L2 1.4E-008

$MOD FQ ML3 5.78333E+009 72.129
$LET L3 1.33E-008

The format of data generated by script is exactly the same for each run. File generated in the final run can be used as a
result of optimization without the need of modifying circuit description.

$MOD FQ MC1l 4.15629E+009 27.016
S$LET Cl1 2.74371E-012
$MOD FQ MC2 3.13218E+009 20.6253
SLET C2 4.34752E-012
$MOD FQ MC3 3.13218E+009 20.6253
SLET C3 4.34752E-012
$MOD FQ MC4 4.15629E+009 27.016
SLET C4 2.74371E-012
$MOD FQ MLl 7.13664E+009 106.828
S$LET L1 9.75405E-009
$MOD FQ ML2 7.91643E+009 112.526
$LET L2 8.35042E-009
$MOD FQ ML3 7.13664E+009 106.828
SLET L3 9.75405E-009

42



‘AMP’ - Admittance Matrix Program

Example optimization session is shown in figure 2.6.5. The session is started and controlled by scilab. While script is
running, AMP is invoked multiple times, and in order to to save time, it is better to configure AMP without graphical
interface (GUI = 0) and with display delays set to minimum (TICK = 1).
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Fig.2.6.5. Example pattern search optimization session in scilab.

Optimization runs can have many flavors and as an inherently nonlinear processes may give different results depending
on problem formulation or initial conditions. In principle optimization runs attempt to minimize selected error function
[err(X)] by searching of optimal values [min = err (X,p¢)] for all passive components X=(C1,C2,C3,C4, L1,L.2,1.3).
Due to the nature of problem, parameters of corresponding FQ model have to be updated along with the new value of
component during search procedure.

1521]
G

L PS 1521 S PTS

fof f
P s

Flg 2.6.6. Types of error functions used in filter optimization.

pt

Search procedure in optimization algorithm may generate virtually any value for a component ( X= (C1,C2,C3, C4,
L1,L2,L3) space values is continouse), therefore parameters of FQ models have to estimated by interpolation. For a
given value of the component, two discrete FQ models are found in a component database, for the closest smaler and
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larger values. FQ parameters are calculated by linear interpolation. The definition of a used FQ database is a
configuration parameter for optimization script.
Two types of error function shown in figure 2.6.6 were used. PS function (left) calculates error only for pass(P) and
stop(S) band. PTS function (right) calculates also error in transition (T) band. Green areas are considered to be target
function values. If for a given frequency, function value is in the green area, error function is zero. If function value is in
the red area, error is calculated as a distance to green area. Errors are calculated and expressed as decibels [dB]. Gray
color marks don't care area, where errors are not calculated. The pass band is defined by ripples Gr[dB] and frequency
f,. Stop band by attenuation Gs[dB] and frequency f;. Transition band by attenuation Gr[dB] at frequency fr.
For a given discrete frequency set defined by $FREQ command, error function can be expressed as sum of errors
(SUM) or maximum value of errors (MAX). These, together with two types of error functions (PT, PTS) give possible
error functions: PS-SUM, PS-MAX, PTS-SUM, PTS-MAX, used in optimization procedure.
The optimization algorithm is based on 'pattern search’ (a.k.a. Hooke-Jeeves) approach.
The first modification is that search step represents relative change. Starting step value of dX=0.20 means, that initial
search space is determined by 20% relative component varation of all components in X vector.
Second modification is, that along with standard exploration STD, alternate aproach using sensitivities may be used in a
exploration steps. SENS modification minimizes number of AMP calls but makes AMP calculations more elaborate and
less accurate since sensitivies analysis takes into account only the change of base value, while FQ model parameters
remain unchanged. But, since sensitivities are used only for exploratory steps, only the quality of pattern search
estimation might be affected. The pattern search steps, are performed with simultanous change of componet values and
FQ model updates, regardless of the method used in exploration.
Basic optimizer configuration is determined by:

error function : PS-SUM, PS-MAX, PTS-SUM, PTS-MAX

exploration method : STD, SENS

FQ models database: HQ — high Q coils, LQ- low Q coils.

Steps configuration: dX_max, dX_min, N_STEP maximum number of search steps (exploratory steps are not
counted)
The optimizer stops when either:

— solution with zero error is found err (Xope) =0,

— or relative step is lower then minimum value dX<dX_min,

— or maximum number of steps is exceeded N > N_STEP.
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Fig.2.6.7. Graphical log from hq_pts_sum_std optimization session.
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The script creates graphical and textual log.

Graphical log is shown in figure 2.6.7. The solid green plot is for the ideal filter, the solid blue plot for a reference filter,
each red dashed marks a succesful, each dashed blue marks an unsuccesfull searching attempt, thick red plot marks the
solution.

Begininnig and ending piece of a textual log is shown below.

log: log pts_sum\flp ch 1dB 1G0_7th 1.log
ERR_FUNC_TYPE = PTS_SUM

FQ MOD = HIGH Q

ref:flp ch 1dB _1GO_7th ref.in
proj:flp ch 1dB 1GO0_7th.in

path: \jobs\Amp\ex\ex6\flp hg pts sum std\
LP_FREQ = 1000000000.000000

PB Ripples dB = 1.000000

TB_FREQ = 1500000000.000000

TB_Att_dB = -40.000000

ST _FREQ = 2400000000.000000

ST _Att_dB = -80.000000

opt_run max = 150

dx = 0.100000

PB Weight = 1.000000

SB Weight = 1.000000

PS_Gain = 1.000000

* ideal run

err dB = 18.010174 pass_err dB =0.056018 tran_err dB=17.954156 stop_err_dB=0.000000
* reference run

err dB = 325.242172 pass_err_dB =325.242172 tran err dB=0.000000 stop _err dB=0.000000
* initial run

* set by scicoslab

$SMOD FQ MC1 3.0375E+009 20.8242

SLET Cl 4.6E-012

$SMOD FQ MC2 2.34E+009 22.1586

SLET C2 6.56E-012

$MOD FQ MC3 2.34E+009 22.1586

SLET C3 6.56E-012

$SMOD FQ MC4 3.0375E+009 20.8242

SLET C4 4.6E-012

$MOD FQ ML1 5.78333E+009 72.129

SLET L1 1.33E-008

$SMOD FQ ML2 5.66667E+009 71.3991

SLET L2 1.4E-008

$MOD FQ ML3 5.78333E+009 72.129

SLET L3 1.33E-008

*ok ko k ok

err dB = 325.938888 pass_err dB =325.938888 tran err dB=0.000000 stop err dB=0.000000

SMOD FQ MC1 4.16914E+009 27.1639
SLET Cl 2.73086E-012

SMOD FQ MC2 3.23163E+009 20.4163
SLET C2 4.08233E-012

SMOD FQ MC3 3.23163E+009 20.4163
SLET C3 4.08233E-012

$SMOD FQ MC4 4.16914E+009 27.1639
SLET C4 2.73086E-012

$MOD FQ ML1 6.94204E+009 103.955
SLET L1 1.01159E-008

SMOD FQ ML2 7.26759E+009 107.785
SLET L2 9.51833E-009

SMOD FQ ML3 6.94204E+009 103.955
SLET L3 1.01159E-008

* ok ok ok ok ok

err_dB = 69.846449 pass_err_dB =61.162841 tran_err_dB=8.133144 stop_err_dB=0.550463
* This is the best result

err dB = 69.846449

* opt run =129, dX =0.000781
That is all, folks

The results obtained by different optimizer configuration are in a table 2.6.1 and in a figure 2.6.8.
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Only two runs gave exactly equal results (hq_pts_max_std, hq_pts _max_sens), the reason being, that there were only
four successful search steps in both cases.

The two best designs ( hq_pt_sum_std, hq_pts_sum_std) are also practically identical, which is quite remarkable as
both were found in more than 100 steps.

hqg ps_max_std |hg ps_max_sens |hq_ps_sum_std hg_ps_sum_sens
C1 2.7437E-012 2.6756E-012 2.7139E-012 2.7265E-012
C2 4.3475E-012 4.2395E-012 4.0826E-012 3.8882E-012
C3 4.3475E-012 4.2395E-012 4.0826E-012 3.8882E-012
C4 2.7437E-012 2.6800E-012 2.7139E-012 2.7265E-012
L1 9.7541E-009 1.0320E-008 1.0148E-008 1.1479E-008
L2 8.3504E-009 9.0001E-009 9.5189E-009 9.8858E-009
L3 9.7541E-009 1.0320E-008 1.0148E-008 1.1479E-008

hg_pts_max_std |hg _pts_max_sens |hq_pts sum_std |hg ps_sum_sens
C1 3.3120E-012 3.3120E-012 2.7309E-012 2.7094E-012
C2 4.7232E-012 4.7232E-012 4.0823E-012 3.8639E-012
C3 4.7232E-012 4.7232E-012 4.0823E-012 3.8639E-012
C4 3.3120E-012 3.3120E-012 2.7309E-012 2.7094E-012
L1 9.5760E-009 9.5760E-009 1.0116E-008 1.1550E-008
L2 1.0080E-008 1.0080E-008 9.5183E-009 9.9476E-009
L3 9.5760E-009 9.5760E-009 1.0116E-008 1.1550E-008

hq_ps max_ std

Tab.2.6.1. Results of optimization session.

hq_ps max_sens
21(r-0pt) b-vd) SpiceOpus Pl

hq_ps sum_ std

hq_ps sum_sens

o . )
vz Ha Ha Ha
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Fig.2.6.8. Comparison of results of different optimization session from table 2.6.1.

The major problem with the design is lack of flatness in upper pass band. The upper pass band is zoomed in figure
2.6.8, where green plot is ideal filter response, blue is reference filter response (the design shown in figure 2.6.3), red
plot is the result of optimization.

From pass band flatness perspective, the best design is hq_pts_sum_std, and this design is qualified to preferred
number optimization.
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The preferred number optimization tries to minimize error function while replacing arbitrary part values with values
from a standard set. The standard set can be either predefined E6, or E12 or E24 or any other.

The entry point in a process is the design selected as the best result of pattern search optimization stage -
hq_pts_sum_std in this case. For each part value, two discrete numbers from standard set are found, the closest smaller
or equal and closest larger number. Thus during preferred optimization, part value can be replaced by either lower or
higher discrete number. The first combination checked is that of closest values. All other combinations are checked and
the one, which provides smallest error, is the result of preferred number optimization and marked as a thick red line.
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Fig.2.6.9. Example preferred number optimization session in scilab.

hg ps max |hg_ps_sum |hg_pts_max |hq_pts sum |closest
C1 2.70E-012 2.70E-012 3.30E-012 2.70E-012 2.70E-012
C2 4.70E-012 3.90E-012 4.70E-012 3.90E-012 3.90E-012
C3 4.70E-012 3.90E-012 4.70E-012 3.90E-012 3.90E-012
C4 3.30E-012 2.70E-012 3.30E-012 2.70E-012 2.70E-012
L1 1.00E-008 1.00E-008 1.00E-008 1.00E-008 1.00E-008
L2 1.00E-008 1.00E-008 1.00E-008 1.00E-008 1.00E-008
L3 1.00E-008 1.00E-008 1.00E-008 1.00E-008 1.00E-008
Tab.2.6.2. Results of preferred number optimization sessions.
hq_pts max hq ps sum =hq pts_sum = closest

2145 _pl
dB(s21)

a8(s21)

Curve: <space> @
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4

Fig.2.6.10. Comparison of results of preferred number optimization sessions from table 2.6.2.
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The preferred number optimization should provide smallest possible deviation from the pattern-search result, and the
solution obtained for 2 error functions (hq_ps_sum, hq_pts_sum) meets this criteria. As it happens, it is also closest
values solution. The results are shown in table 2.6.2 and in figure 2.6.10, where green plot is the ideal filter response,
blue plot is a result of pattern-search optimization, red plot is the result of preferred number optimization.

The next step in filter design is sensitivity analysis. There are two approaches supported by AMP. First option is Monte-
Carlo analysis implemented as a scilab script. Second option is usage of $SENS command and post processing of
results.
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36 [x_path,p_fname,D_extensio rts (projs) ;
37

38 inc_fhd=mopen (proj_path$+incs

39 mfprintf(inc_fhd, "3s\n","* reset by scicoslab");
40 nclose(inc_fhd):

42 amp_err = run(amps, Droj_pathé, prols)

ro= ‘execute
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Fig.2.6.11. Monte-Carlo analysis executed by scilab.

In Monte-Carlo analysis AMP is invoked multiple times, values of parts are generated by random number generators
and by means of generation include files with SLET commands create a circuit description with random spread of
parameters. Therefore, circuit description should include nominal part values and parameters of FQ models, as shown
below.

Cl 01 2.7p MOD MC1
C2 0 2 3.9p MOD MC2
C3 0 3 3.9p MOD MC2
C4 0 4 2.7p MOD MC1
Ll 1 2 10n MOD ML1
L2 2 3 10n MOD ML1
L3 3 4 10n MOD ML1
PULI 10

PU2 4 0

R1 51 75

R2 0 4 75

vli 50

* Commands

SEND

$INC flp_hg 1GO_7th_opt_mc.inc

$FREQ LIN 100M 3G 10M

$MOD FQ ML1 7.0G 106

$MOD FQ MCl 4.2G 27.0; $MOD FQ MC2 3.3G 22.0
SMCAD VAL

SRUN

Scilab script is configured with number of required runs and value of 36 spread for capacitor and inductors. The
presented results in figures 2.6.12, 2.6.13 are for 100 runs and 10% 3o spread for both capacitors and coils. The first
run is a nominal values run, with empty included file, and response for this run is marked as thick red line, all others
with randomly generated part values are represented as blue doted plots. Random number generators are not correlated.
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10%, L_36=10%, 100 runs.
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.2.6.12. Monte Carlo results for C 3¢

Fig

Fig.2.6.13. Zoomed pass band of the graph in figure 2.6.12.
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AMP calculates sensitivities of transfer functions when $SENS command is used in circuit. This type of analysis may
be launched directly from schematics editor, yet scilab script has to be used as a post processing tool.
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Fig.2.6.14.Sensitivity analysis of the filter.

Similarly, like in Monte-Carlo analysis part values are considered to be random variables, with nominal values
corresponding with mean value. Spread of variable is assumed to be Gaussian and determined by 3c. With sensitivities
one can calculate the deviation of transfer function 6TF due to the change of any parameter 6X. Thus, assuming that
spread of part values are known to be random variables with know spread oy, it is relatively easy to the calculate
estimation the spread of transfer functions or=S(c,) as long the part variations can be considered to be small ox<<I.
For uncorrelated spread of all L,C parts defined by 3ox = 10%, 3o1r - deviation of transfer function is calculated.
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Fig.2.6.15. Results of sensitivity analysis of the filter.

4

S21 is nominal value of the magnitude of a transfer function, S21max = S21(1+3o1¢) corresponds to nominal value
with 3o deviation added, S21dB = S21(1-3o7r) corresponds to nominal value with 3orr deviation subtracted.

For 900MHz:  S21dB=-2.09, S21dBmax =-1.81, S21dBmin = -2.39

For 1000MHz: S21dB=-2.18, S21dBmax =-1.94, S21dBmin = -2.42
For 2400MHz: S21dB=- 77.6, S21dBmax = -74.3, S21dBmin = -82.9
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With all their flexibility FN models are not very accurate. Therefore, in the last stage of analysis FN models are
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Fig.2.6.16. Comparison of results of analysis for FN (blue) models and s-parameters (red) 0402 models.

parameters models give less attenuation in pass-band, but less in stop-band.
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Fig.2.6.17. Comparison of results of analysis with s-parameters for 0603 coils(red) vs 0402 (magenta).
If 0402 coils are replaced with 0603 coils the flattness in pass-band is even better, but stop band attenuation is still about

10dB worse than predicted by FN models. If this is a problem, next design iteration is required, which means return
with the design to pattern-search optimization stage.
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3. Examples explained.

Examplel - Lna

Summary: ideal directional coupler

Example2 - Active splitter

Summary: voltage gains and s-parameters test network.

Example3 - Stability analysis.

Summary: stability factors, stability circles, frequency models.

Example4 - Coupled transmission lines

Summary: even-odd modes, coupled line modeling, decoupling transformations.
Example5 - NF for cascade of LNA and tuner.

Summary: noise modeling, NF, minimal NF, Touchstone noise data, noise analysis.
Example6 - RF passive filter optimization.

Summary: folder structure, sensitivities.
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3.1. LNA example explained.

Summary: ideal directional coupler.

3.1.1. Ideal directional coupler.
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Fig.3.1.1. Two port network.

Definition of s-parameters for two port network is a matrix

bl|_|sll siI2||lal

= 3.1.1
b2 |s21 s22)|a2 G111
where, 'power waves' a, b can be represented by port's voltages and currents as:
_ul—ilR0O _ul+ilR0
bl=——— al=—+—
2VR0O 2VR0 512]
b2_u2—12R0 P u2+i2R0

= adl= ———
2VRO 2VR0O

The 'power waves' definition in [3.1.2] assumes that reference impedance for all ports is RO, i.e. it is the same and real.

53



‘AMP’ - Admittance Matrix Program

Ideal coupler is 'made' with 3 ideal amplifiers and 2 resistors of value equal with reference impedance RO.

Internal schematics is shown in figure 3.1.2.

ie Edit View Draw Object Library Tools Window Help

SEIEY
IETET

EHEee-o [ DJQEDrBe 9k € 2K

LA[# @D\ NN 2 OCCC(ZL - 7% % %

Fies | DesignView | DRC | L TR A 2 = 25 = B '—j
. Libraries =l E : S S
B L Amp i o
e Bmpils J 18 .
SIESD\:E 1 Pi Po
o B
(@ 741 3 .
i@ b | # DC50 Po PiVb Va
& 7400 25| .
@ sctelib ] A 12PoPi
:@AD:r\h || EREREN A
D Ha3_fmp D _tmp 3 Rb -1 Pi : 500
B Dt : Ra 2 Po:::50.0
D% DS I naTF_Amp ] At
D D na_dmy 35
Fers Do | Ab Vb 1'Vb
oo E Aa Va2Va
ey i
b any i #H
D> %_eplt as i I R .
al = i) Vb=u-i"R:-:- Vb — ~Va
| Va=u+i*R:.:
DC50 ] s
a8 |
-
s a) -
=
K| _E

Ready 1252 2499

Fig.3.1.2. Ideal coupler internal schematics.

|

Ports Pi, Po corresponds to input power port and transmitted power port respectively. From network perspective,
voltage and input current at Pi port is equal with voltage and output current of Po port. Thus for a signal path there is
equivalent short-circuit between Po, Pi ports with no impact on probed network. However, current and voltage are
sensed internally and voltage signals at output ports Va, Vb are proportional to 'incident power wave' a

Va=u+i RO [3.1.3]
and 'reflected power wave' b
Vb=u—iR0 [3-1.4]

Scaling factor (1/(2sqrt(R0)) is not important, as all s-parameters of the network can be expressed as a ratios of voltage
signals produced by ideal coupler.

S”:ﬂ _ul—ilR0O s2]:b—2 _u2—i2R0

al ,-o ul+ilR0O al ,-o ul+ilR0O [3.1.5]
s]2=ﬂ _ul—ilR0O S22:b_2 _u2—i2R0

a2, -, u2+i2R0 a2 -, u2+i2R0

The incident power port at port is zero (a = 0) when port is terminated by a reference impedance RO (i.e. u=-i R0).
Therefore, matched load and source have to be used in a test network if s-parameters calculation are to be
straightforward.
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3.2. Active splitter example explained.

Summary: voltage gains and s-parameters test network.

3.2.1 Voltage gains and s-parameters in a test network

Ji& Rimu Schematic - [s2p_tf.sch] =12l
£% Fle Edt Vew Draw Object Library Tools Window Help =171

DEE -

CDoOED-2E g8 @ € 2N

=
Fies | Designview| DRC | B
T C B
%:mpv\b J 155
a5 R1 i 2 R2 J
(B e -l ] L 1 2 : =
50 . vl 50
(D> K3_Any D> A_Amy ]
Do Do E : A i : : ) V2
Es B V10D pu ut | u2 puz |
PO vy
D> PTM_&mp D> Ko2_Amp . . . . . .
L 1 ol l
;g o
|
Rea;y [l -185: 65 il I >\m
Fig.3.2.1. S-parameters test network with voltage probes.
When in the test network source R1 and load R2 impedance are the same and equal with RO reference impedance
R1=R2=R0, s-parameters can be expressed by voltage gains.
1—ilR0 1—itro "1 V]R_]uj RO 321
url—i ul—i u 2.
sll==————2 == =2——1=2K,;;;,—1 5211
ul +ilR0 ,,_, ul+ilRI Vi Vi
—u2
u2———R0
u2—i2R0 R2 u2 [3.2.2]
s2]=" =222 =2k .,
ul+ilR0 ,,_, VI Vi
. . w2 V2w RO
u2—i2R0 u2—i2R0 R2 u2 [3.2.3]
S22:— = - = :2__1:2Ku2/V2_1
u2+i2R0 ,,_, u2+i2R2 V2 V2
—ul
ul — RO
ul—ilRO RI ul [3.2.4]
§12=——— = =2—=2K i1
u2+i2R0 ,,_, V2 V2
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3.3. Stability analysis example explained.

Summary: stability factors, stability circles, frequency models.

3.3.1. Stability factors.

Two port device is said to be stable when [5]:

S,y I
+1221S

Sy Iy
Sy —s T
Siils

<1
l1-s,I,

|Finp|: Sll+ <1 |F =

aut|
T, |<1

|Ts|<1

Equivalent conditions can be expressed by K-factor and B;-factor:

2 2 2
1_|S11‘ _|S22‘ +|A|
K= >

2 2 2
1 B=1+|s,[ =|sp[ —1A">0
2|512321|

K-factor and B;-factor are most popular stability indicators:

B2 k_B1:R-(k)|G-B1| - SpiceOpus Plot -10| x|
KB
1.1

Curve: <space= @

flHz]
v

Fig. 3.3.1.1. K-factor red plot, B1-green plot for circuit potentially unstable above 1GHz.
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3.3.2. Stability circles.

Load stability circle [5] is defined by equation:

SpsSyl |

st

|rinp(rL)|: 1-s,T, =

Solution of equation [3.3.2.1] is a circle with center C; and radius R;:
* *
_SllA +5y | SaSi2

L™ ap 2
Al _‘522|

L7 AR 2
Al _|522|

Source stability circle is defined by equation:

S8y L -1
-5, T

|Fout<FS)|: 522+

Solution of equation [3.3.2.3] is a circle with center Cs and radius Rg:
_szzA 5y | SaSi2

- 2 2 s 2 2
IA| —|s11| IA| —|s“\

N

[3.3.2.1]

[3.3.2.2]

[3.3.2.3]

[3.3.2.4]

Load and source stability circles define the borderline between 'stable area' and 'unstable area'. For unconditional

stability unity circle should be in 'stable area'.

stabs_plot:stab_S_circ: R-0.1GHz | G-1.56 -0l =| stabl_plotstab_l _circ: R-0.1GHz | G- o m] |
v, Imag v, Imag
a0
1 5 |~
B0
30
210
240
70 |
_.—'—'—'_'_'-FFFF
x*, Real x, Real
Curve: =space= @ v Curve: <space= @ 4
Fig. 3.3.2.1. Stability circles for f={0.1GHz(red), 1.5GHz(green), 3.0GHz(blue)}. Unity circle is black.

57




‘AMP’ - Admittance Matrix Program

K2 b1 _plot:R-(abs(C1)) | G-(RL) | - SpiceOpus o |m] B} | EZ DS_plot:R-(abs{CS)) | G-{RS)| - SpiceOpus o ]
CLIRL CSRS
[
100 i
100
10 10
1
1
18+008 18+008
fiHz] flHz]
A Vi

Fig. 3.3.2.2. Distance to the stability circles center and stability circles radius vs frequency.

3.3.3. Small signal transistor model.

OPUS Spice was used to determine point of operation and small signal model of the transistor.

S Rimu Schematic - [opus_ex3.sch]
Fle Edt View Draw Object Lbrary Tools Window Help
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W" 1H\2\H\3\..\‘...\5....5..”7.\\\5\\\\9\\\M“\\H”HH“HH“HH"H\\15.\\.‘5.\..‘7....“‘\...19\\.\ZDHHZMH\ZHHZ‘—"'
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Bl | MySpice ]
). Spice u
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@ actelib 2 |
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= - v3 in
D> $10CMD D A2_Amp 3 | 50v L
D> $12CHD D47 Amp | Rc1 Let Re2 ro c2
> $3CMD DBl _tmp N 1] 240 10.0n 2.4k ve 0.01 1n
D $40MD e ] r e} ——
> 35CHD D B2_bmp 4 — . |
D> $6CHD D82 BITCE ] G BFP183
D $7CMD D82 Cer ] vi b
D> $80MD D> B2 Ser 5 | xql a
> $5CMD T>82 Shunt ] 8|8 vo
] ve| Sm=me
D &1_tmp Do TL ] )
o
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s | + . J
i =
.
L | o
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Ready [y 355: 585 By ] fem

Fig. 3.3.3.1. Spice model of the gain block.
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JiE Rimu Schematic - [opus_ex3.sch] _1glx]
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Fig. 3.3.3.2. Results of analysis of the gain block in Spice.
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Fig. 3.3.3.2. Parameters of the transistor in the point of operation.
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imu Schematic - [bfr183_mod_a.sch] =181 x|
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Fig. 3.3.3.3. Hybrid-pi small signal model of the transistor < bfp pi a.mod> < bfp183a.lib>.
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Fig. 3.3.3.4. Hybrid-pi small signal model with package parasitic components < bfp pi a.mod> <;bfp183b.1ib>.

Parameters of the model are calculated by <ex3 mod.sce> script. Parasitic package components are extracted from
Spice model.
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3.3.4. Capacitor FQ model.

FQ model of a capactior is medium accurancy equivalent series RLC model.

C1 11p MODC0402
—H1-
$MOD FQ C0402 1.7G 27
C Rs
o77n 1P 0315
—reer || ——]—

Fig. 3.3.4.1. Equivalent FQ model of capacitor C=11p with F=1.7GHz, Q=27

Two model parameters are: F — rezonant frequency and Q — equivalent quality factor as in:

2LC+sRC+1_ 1 SZJ'S%'LLC I Sz”%'gz 1 Qr
S S 2
Zls)= =— == Q'=— =— 3.3.4.1
(s) sC sC 1 sC Q? LC © R [ ]
LC
For a given C, F,Q, parasitic R,L are calculated according to equations:
Q=2xnF L= i R:% [3.3.4.2]
Q°C Q

Parameters of FQ model have to be estimated by analyzing frequency response of impedance of a given capacitor (C=
11p).

i8I
File PrintPlot TempAdj. ChangePlot MonitorXY BiasChange AddRL MultPlots Help About.. Order Sample
Impedance and C0402C110K3GAC @ +25°C with 0 YDC Bias
Frea 1.738GHz Z 459.61m0hm ESR 316.75m0hm ESL744.50pH
M Q105

100K

100m

100k m 10M 100M 16 106

Fersion 1969 Frequency (Hz)

or
NOTE: Disclaimer

Fig. 3.3.4.2 Impedance frequency response of C = 11p [0402, NP0 — Kemet Spice].

From the plot one can estimate that a resonont frequency is F=1.7GHz and eqivalent series resitance is R=0.3 (blue plot

- relatively flat up from 100MHz up to 3GHz). For F,R Cmodel vl.sce script calculates series inductance L=0.77nH
and equivalent quality factor Q = 27.
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3.3.5. Coil FQ model.

FQ model of a resistor is medium accurancy equivalent parallel RLC model.

L 10n MODL0402

$MOD FQ L0402 4G 22.6
Cl 0.16p
Il
L1 R
10n 11.1
ann 1

L

Fig. 3.3.5.1. Equivalent FQ model of L=10n coil with F=4GHz, Q=22.6

Two model parameters are: F — rezonant frequency, Q — equivalent quality factor as in:

_ sL+R  _ sL+R _(sL+R)Q 5 1 QL
Z(s) =77 0=F% [33.5.1]

_szLC+sRC+1_LC( 1 )_52+SQ+Q2 LC

sy L
L LC

For a given L, F,Q, parasitic R,C are calculated according to equations:

1 QL
Q=2xF C=—— R=2==
Q'L 0

Parameters of FQ model have to be estimated by analyzing specification and frequency response of impedance of a
given coil (L= 10n).

[3.3.5.2]
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£ 130 —
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FiatedCurrent(ma) 140 & 9 T!'
= Sizeodirm) it £ 1 é‘ﬂ
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Ell 8
L -
0op 1 0 0001 1 0 1001 T 0
T CPOETHITINAT T FrequencyGHz] FrequencylGHz] Fre suencylGHz]
) LGPO2TNTN02 10 ] | LerPoeionae 2] |/ |52 | Lapoeiionan @ | [ e opeemionum =
[ LOPO2TOTONHI2 it e = — =
) LOPO2TGINID2 1 (Bl% 8] s LB ) % | & | &) 8% e|&
[ LaPO2TOTINI02 1 /5% 140 012
I LOPOZTNTINHIZ 1 -3 141 2
) LOPO2TNINJ02 1 /5K 14 02
1 LGPO2TOTINHIZ 1 -3 141 2
) LOPO2TNT2NHI2 12 -5 14 02
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- ) LaPO2TOT2NHO2 12 /0% 140 0402
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L1 LOPOZTQTINHIZ ] -5 14 02
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L L1on_0402_HQ.pdf = ¥ Show ol downloads... %

Fig. 3.3.5.2 Impedance frequency response of L = 10n [0402, TN-Murata]. Resonant Frequency 4GHz is above scale.
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Coil data sheet specifies resonant frequency F=4 GHz and quality factor q=8 measured at f{q=500Mhz.

i L10n_0402.pdf (SECURED) - Adobe Reader —181 x|
Fie Edit View Window Help x

Doe | @BREBEOE| s ® e o@®m 58] |« —
; @ F“i';f"s Specifications Minimum quantity 7

[
iy E D 4 180mm Paper taping 20000
D:D - ‘:I B Packing in bulk 500

L1

SEmibem . Mass (Typ)
1 piece 0.00005g
Lsize 0.4 +0.02mm
W size 02 £0.02mm
Tsize 02 £0.02Zmm
Size code in inch (mm) 01005 (0402)
Specifications
Inductance 100H +3%
Inductance test frequency S00MEHz
Rated current (itemp) (Based on Temperature rise) 140mA
Max. of DC resistance 2500
Q (min.) 8
Q test frequency S00MHz
Self resonance frequency (min.) 4000MHz
Operating temperature range (Self temperature rise is not included) ~ -55~125C

Fig. 3.3.5.3. Coil specification.

FQ model requires extrapolation of quality factor at resonant frequency. This is done by scilab script <Lmodel v1.sce>,
which uses square root frequency approximation to account for skin effect.

| 5. scicostab .51 (0) 10 [ rerera——— _imixif!
E Fle Edt Preferences Control Edior Applcaions 7 Toolboxes Fle Edit Search Execute Debug Scheme Options Windows Help

5 ROk - ;
g B LR IEE ol Cpeikopaelaaz@io e El
] :’ 1 // Tunedgl.aso x|
E 1.000D-08 o 2 // Unics -
F MOD = al i Eiesr;
cler
F 5 lines(0):
Fo = 6 chdir(get_sbsolute_file_path('Lmodel_vl.sce')):
7 // units definitions
4.000D+09 8§ exec('..\..\_sci\units_vl.sce');
Fq = 9 // components
10 L=10%*nH
5.000D+08 11 FQ MOD = sF
qf = 12 if Fg_MOD
13 Fo=1000*MHz;
[RQ = 15 Wo=2*pi*Fo;
16 R=Wo*L/
3.9269908 17 C=1/Wo/No/L:
R = i CpF=C/pF
19 else
11.107207 20 MEz
CpF = 21 q for Q spec
22 *MHz
L 0.1583143 23 qf=
Q = .. 24 wq=2*3pi*Fa;
-Admf RSl
22.627417 26 // increase of R due to skin effect
27 R=Rg*sqrc (Fo/Fg)
|28 FWo=2*%pi *Fo:
=4-Ghz-[2s C=1/Wo/Wo/L:
Alse CpF=C/pF
Illency' 1 31 Q=Wo*L/R
32 end;
33
34
[ — ;_II i
; hd . Y

:F%IE_EI’E - ‘ v tone] : R Il ‘m:ucmm:s Logical lne: 23
Dsan| | S| E|e & 8|0 G @M e e ey @ o= 8 & B 28 CuR 4 196K J e[ B G ) b & 1

Fig. 3.3.5.4 Calculations of FQ model parameters for coil <Lmodel vl1.sce>.
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3.3.6. Resistor FQ model.

FQ model of a resistor is medium accurancy equivalent parallel RLC model.

R 240 MODR0402
—{ 11—

$MOD FQ R0402 33G 0.036
Cr 0.055p
1]

Lr R1
0.42n 240
]

Lt

Fig. 3.3.6.1. Equivalent FQ model of resistor R=240 with F=33GHz, Q=0.36

Two model parameters are: F — rezonant frequency, Q — equivalent quality factor as in:

2
+
Zls)=y LR sLrR _LARIQ o L, QL
s LC+sRC+1 LC(s2+s£+L) S5 L240? LC R [3.3.6.1]
L LC
For a given R, F,Q, parasitic L,C are calculated according to equations:
Q=2nF L=RQ C= I [3.3.6.2]

Q2 QL
Parameters of FQ model have to be estimated by analyzing frequency response of impedance of a given resistor. As

indicated in literature[6], resistor parasitics are size dependent.

eI
Fle Edt View Window Help .
Do | SEZOEaXE ®®2)n| @@ 5 8|2 2| Tools | Fill &Sign | Comment
z mm) [ mm) 3
L] i) (pF) (nH)
0.02/ 0.01/ 0.00004/ 5 ——
0201 | 951 | 025 | 002581 | 00206 | 1.73x10 Fig. 2 - Mounting on resistors on RF
0.04/ 0.02/ | 0.000352/ 7 grounded quartz substrates for testing
0402 1.02 0.51 0.22710 0.0262 | 1.89x 10 Letft - flip chip, resistor down

Right - wrap around, resistor up
0402 0.04/ 0.02/ | 0.000352/

(wiap) | 1.02 | 051 | 022710
0.064/ | 0.032/ | 0.000816/

0803 1626 0813 050645 | 00403 0.0267

0.0392 | 0.1209

Document Number: 60107 For technical questions, contact: thin-film @ vishay.com www.vishay.com
Revision: 04-Feb-09 1

Technical Note VISHAY.
Vishay

Frequency Response of Thin Film Chip Resistors

C: internal shunt capacitance

L: internal inductance

Lo R L Ly R: resistance
> ‘ m = ,\‘/ "‘w 001 il T L¢: external connection inductance
CGI =Cq Cg: external capacitance to ground

Fig. 3 - Lumped equivalent circuit used for modeling, a transmission line model was added
for the resistor's landing pad and the test substrate's mounting pad effects

Dowt|| 5|Cle|6 ¢ BHW - m @a M 3 & 71 =8 84 & . =8 B8 28 Cuy <=9 Kl | EE a0 & onm
Fig. 3.3.6.2. Impedance frequency response of resitors — Vishay technical note .

64



‘AMP’ - Admittance Matrix Program
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Fig. 3.3.6.3. Impedance frequency response of resitors continued — Vishay technical note .

Using data presented in Vishay techincal note, it was assumed to use equivalent series inductance L+Lec+Lc=0.12+0.30
= 0.42nH and equivalent parallel capacitance for 2 port device C+Cg/2= 0.04+0.015 = 0.055pF. For assumed parsitc
components FQ parameters are calculated by a script Rmodel v1.sce

T

E Fle Edt Preferences Control Editor Applications 2 Tooboxes

g [=] TR . Scipad 8.72 - Rmodel_v1.sce

g IS PN
iR =

[ 240
FQ_MOD =
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0

.3641095
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-

. Fle Edt Search Execute Debug Scheme Options ‘Windows Help

‘ICe®ls o oaedam| @6 wl

1 // TunedQl.aso

2 // Units
3 clear;

4 clcr

5 lines(0);
6

14 // components
15|r=210

16 // flag

17 FQ MOD = 3F

24 C=1/Wo/No/L;
25 CpF=C/pF

26 =lze

27 1 = 0.42%nH

28 c=

53

=

gdim
Fage 11/ 11

—Adnlfs  F e
31 Q = We*L/R
32 end;
| I
34
. 5 |
TDefault T 2 INone] - — Il ‘Iu:lscon-m:s Legieal net 15 I
| Llelele » EBE = a M 3 & 1 2 el ¢ =880 23 CeR 4 «B6]E |en[f PG B & s

Fig. 3.3.6.4. Calculations of FQ model parameters for resistor <Rmodel vl.sce>.
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3.4. Coupled lines example explained.

Summary: even, odd modes, coupled line modeling, decoupling transformations

3.4.1. Even, odd modes.

[ Rimu Schematic - [cpltLsch] =12l
£% Fle Edt Vew Draw Object Library Tools Window Help =171

DE@iEBo- - B -JQED>2@asRk|x 2w
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—_— Lts 0?28 08 38 e S ss e es T ts 8 es 0 s e e e
Fies | Designview| DRC | , =
Libraries. =
Amp .
23 Ampib m
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- | MySpice N
B . Spice 15 _ _ — —
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@ 4000 ]
@ 00y 2
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Fig.3.4.1.1. Equivalent lumped model for a segment of lossless symmetric coupled lines.
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Fig.3.4.1.2. Equivalent lumped models for a coupled lines segment in odd and even mode.
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In a odd excitation mode both lines are driven mode with equal magnitude and opposite phase. Current flowing in
opposite directions cancels magnetic field (reduced equivalent inductance). Asymmetric voltage increases electric
coupling (increased equivalent capacitance).

Due to symmetry the signal flow is like in two uncoupled lines, both with odd characteristic impedance and phase
velocity:

[—m 1 2uo
2ot =\ Z20m = Zyy="""=27Z 34.1.1
odd ~\ ox2em Vodd J=m)(c+2cm) dif =" odd [ ]

In an even excitation mode lines are driven mode with equal magnitude and phase. Current flowing in the same
direction increases magnetic field (increased equivalent inductance). Symmetric voltage decreases electric coupling
(decreased equivalent capacitance).

Due to symmetry the signal flow is like in two uncoupled lines, both with even characteristic impedance and phase
velocity:

[+m 1 ue _Zoen
7 = — = 7 == 34.1.2
even c Veven \/m comm 2 l e 2 [ ]
where:
L=IAx M=mAx C=cAx Cm=cmAx [3.4.1.3]

For pure odd-even excitation not only lines can be represented as uncoupled, but also relation between input currents
and 'mode’ currents can be easily determined (one uncoupled line determines signal flow when in 'pure' mode).

3.4.2. Coupled line modeling.

Signal flow in a symmetric lossless transmission line segment is defined by set of equations for a voltage drop and a
current drop per unit length:

oul d .
—Ax —il
| Aul —_ ox — L M||dt (34.2.1]
Au2 ou2 Ax M L i 2 T
ox dt
. oil Ax 4 ul
_|Ail|__| Ox _|C+Cm  —Cm || dt (3.422]
Ai2 0i2 —Cm C+Cm|| d T
—Ax —u2
ox dt
The equation set is dependent (coupled) for variable set [ul,u2,il,i2].
If new variable set is defined as even, odd voltages and currents:
_ul+u? o= ul —u?
2 2
3423
. _il+i2 . _il—-i2 [ ]
e—= 10=
2
and substituted into transmission line equations
ul=uet+uo u2=ue—uo (3.42.4]

il=ie+io i2=ie—io
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0 ' 4 (ori
Alweruo)]_ |y Heruoldx| r o g liexio)
| A(ue—uo)|” i(ue—uo)Ax M L|d . 3:4.25]
o x | E(Ze_lo)
0 (. _ 4 (os
_lA(ieﬂ'O)]:_ 5 letio)Ax _|c+cm —le ar et ) 3426
A(ie—io) %(ie—io)Ax | —Cm C+Cm %(ue—uo)
Now, line equations set can simplified into independent equation set (for uncoupled odd-even lines):
%Ax iie
_|Aue|__| Ox _|L+M 0 dt (3.42.7]
Auo aqux 0 L—M iio T
ox dt
9 (; d
aiel_ |axA e o Yla 3428
Aio i(z’o)Ax 0 C+2Cm]|ld T
0x dt uo

Therefore, coupled line problem can be solved by converting port variable set u=[ul,u2] i=[il,i2] into mode variable set
um=[uo,ue], im=[ie,io], calculating solution in 'mode' domain and converting back into port domain.
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Fig.3.4.2. Model of two symmetrical lossless coupled lines.
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3.4.3. Decoupling transformations.
Presented above decoupling model follows physical and network interpretation but is not a unique decomposition.

General solution to multiple multiple lossless lines can be found in a book [7] (together with links to Fortran programs
for spice models generation ).

The problem is formulated as a search for two mode transformations T,, T; matrixes:

lul=r,[U,] [3.4.3.1]
[7]=71,1,] [3.4.3.2]
which convert coupled equation set in port domain [U,I]:
0 _,d
——|U|=L—|1 3433
lul=L—l1] [3.433]
O isl_p~d
——=\|1|=C—|U 3434
li=c—[U] [3.434]
into uncoupled equation set in mode domain [Up,Im]:
0 _ ., d
- Y \U =L =1 3435
UL, (1) [3.43.5]
~011=c, ‘U 3436
2(1)=c,2[v,) paza
Therfore, for a given L,C matrixes, mode transformations T,, Ti should make L,,C,, diagonal:
- [
L,=T]'LT=|"™ 0 [3.4.3.7]
0 ZmZ
c=r"cr=| © ] [3.4.3.8]
0 ¢,
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3.5. NF of cascade example explained.
Summary: noise modeling, NF, minimal NF, Touchstone noise data, noise analysis

3.5.1. Noise modeling.
Noise Power Spectrum Density PSD for signal x(t) is defined as [8]:

. 1 . 1 . R .
SXX(JOJ)=7<|X(Jw)|2>=7<X(Jw)X(Jw)> X(jo)=F(x(1)) (3.5.1.1)
RMS value of x(t) for signal bandwidth BW = f,-f;:

/s
Elx(tf]=[ S, (jo)df (3.5.1.2)
S

Cross PSD between correlated signals x(t), y(t) is defined as:
. 1 . R .
Syliw)=5<X(jo)Y(jo]>  Y(jo)=F(y()) (3.5.1.3)

From AMP perspective noise sources are either voltage or current sources. Output signal is also voltage or current and
as a signal of a noise type should be defined by PSD. Therfore, noise analysis should determine output PSD.
Output PSD for a network with two correlated sources is defined by [8]:

T,

*

T,

Sll SlZ
SZI S22

S, (jw)=[T,T,] (3.5.14)

where T1, T2 are transfer functions from source to output (voltage or current).

From network analysis perspective transfer functions vector [T] is to be defined. The second input is cross PSD matrix
[S]. Parameters in cross PSD matrix are source characterization, and are results of signal analysis.

Noise PSD is a real value function , cross PDS is a complex value function of frequency.

S“T +S12T

S (jo)=|T,T
yy(] ) [ 1 2] Slel"'SzzT

11‘T1‘ +S12T T+S21T T +S22|T2‘ (3.5.1.5)

Since cross PSD are conjugated S, = (S12)* (3.5.1.3),
S,T,T=(8,T,T;) (3.5.1.6)
S Jw)=S,|T P48, |T +2R (S, T, T5)=S [T [+S,|T.[+2R (S, T,T)) (3.5.1.7)

When sources are uncorrelated (Si, = S;; = 0) formula for output PSD simplifes to:

S, (jw)=8,|T [+8,|T, (3.5.1.7)
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3.5.2. NF.
Noise figure is a ratio of total noise to noise due to source resistance.
_N —
F=—— NF=10log(F) [3.5.2.1]
N Rs
Let's assume that device noise is represented as input equivalent v,i noise model.
{5 Rimu Schematic - [noise.sch] =lelx|
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Fig. 3.5.2. Equivalent noise models.

If sources are converted into equivalent Norton Iy source, then

N ]i’ SiiN df SiiN
Nu B ) HUeT Y =G+ 3522
F NRS 1-2 Siisdf 4k TGS Where GS ER(Ys)) Ys GS+] BS [ ]

ns

The notable effect of combining equivalent device noise into the Norton source representation is that NF does not
depend on source load ( i.e. input impedance of active device).

Source noise ins and vy, iy are not correlated, therefore PSD for Norton noise Ix source is:

S. 0 01

SiiN(j(D):[lel] o S, S, Y: [3.5.2.3]
0 Siv Sii 1

SiiN(jw):Siis+Sii+va Ys2+2ER(Siv Ys*>:Siis+Sii+va Ysz+29%<SviYs) [3524]

Since i noise source is correlated with v, current noise i is modeled as sum of independent component i, and voltage
dependent component Y.v, , with complex correlation admittance Y.

I(jo)=1,(jo)+Y V(jo) [3.5.2.5]
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Since, now i, component and v are ucorrelated, thus :

1

S. :l<1 V*>:l<(1 +Y,*V)V*>:ly,< V'sV>=Y § [3.5.2.7]
1A% T T n C T C C vV
_1 | R B R 3528
S,=m<VI>=_<V([+Y*V)>=—Y <V xV>=Y_S [3.5.2.8]
vi T T n c T c c vy
SﬁN(jm):Sﬁs+Sim+Sw( YS2+|YL,2+29%(YCY:)) [3.5.2.9]
For Y&=Gstj*Bs, Y=G+j*B.:
S,-iN(j(o):SiiS+S,.in+SW(Gi+Bf+ G +B’+2 GSGC+2BXBC) [3.5.2.10]
SiiN(j(D>=Siis+Sim+va((Gs+Gc)2+(Bs+Bc)2) [35211]
SiiN(j(D>:Siis+Siin+Sw‘YC+YS‘2 [35212]
and finally:
F SiiN 1 Siin+va YC+YS2 [3 52 13]
= =1+ DL
S, 4kTG,
3.5.3. Minimal NF.
The F in the form with PSD is rarely seen, other form with narrow band RMS noise is more common:
d VY +Y [
F_S,,N VY [3.5.3.1]

= =1+
S..df 4KT G, df
But usually, to make things even more complicated, PSD of i,V is replaced by equivalent noise resistance and

admittance:

voltage noise is related with equivalent noise resistance Ry

v,=8,,df =4kTR,, df [3.5.3.2]

uncorrelated part of current noise with noise admitance Gy

i=S,,df =4kTG,df [3.5.3.3]

After substituting i, v with R,, G, noise, factor can be represented as a function of complex input admittance:

G,+R,|(G+G.V+(B+B,)’
F(Y,)=F(G,,B,)=1+— "(< s GC) (B, f)) [3.5.3.4]

A

Noise factor F(G,,B;) has a minimum Fuin(Gyopt, Bsopt)for optimal source admittance Yopt= Gsopt T j Biopt

Gn+Rn(Gso +Gc)2 Gn
Fmin: G ft Gmpt: 1 + (Gf-l- R ):. Bsopt:_Bc [3535]
sop n
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3.5.4. Touchstone noise data.

In equations [3.5.3.4], [3.5.3.5] noise sources are represented by 3 parameters; 2 real G, Ry, and complex correlation
admittance Y.. They act as a representation of 3 PSD functions: 2 real Sy, Sii, and one complex Syi= (Si)*.
From signal analysis perspective PSD functions are natural description of noise source properties, yet not so common in
RF domain. Touchstone data are related with formula for minimal noise figure [3.5.3.5].
For each frequency noise source is characterized by:

NFnin[dB] — minimum noise figure,

abs(Lopo), arg(Lope) — magnitude and argument of optimal reflection coefficient needed to achieve NFmin,

R./Zy -normalized noise resistance.

Four parameters Touchstone noise parameters can be converted into Fumin, Ysopt= Giopt T j Bsopt» Ru-
Two (Rs, B.) of four required (Ra, Ga, Y., B:) parameters are directly available:

S, =4kTR, [3.5.4.1]
B.=-B,, [3.5.4.2]
And remaining two (Gu, G¢) require solving nonlinear equation set :
2
ro— 3Gt Ri(Giy+G)
min Gmpt

[3.5.4.3]

n
for a given Fumin, Gsopts Rn.

3.5.5. Noise analysis.

Cascade elements have separate s-parameter and noise description. The equivalent noise model of each stage is defined
by PSD functions of voltage S,y and current noise source S, and correlation between the two is defined by correlation
admittance Ye.
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Fig. 3.5.5. Noise model of a cascade.
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All passive components are assumed to be noiseless, therefore all noise sources has to defined explicitly as voltage or
current sources. Noise is measured at port defined by voltage probe.

There is no correlation between internal and external noise sources. Thus, according to superposition theorem, output
PSD S.. measured by voltage probe, can be represented as a sum of contributions of the source noise and all 'noisy'
devices in a network:

Suu(jm):SuuS+Suu1+Suu2+"’ [3551]
First contribution is due to the source resistance Syys = 4kTR;:
S s j@)=[(K,(jw))?4kTR [3.5.5.2]

Kjsis system voltage gain input to output.

Contribution of each active device N=(1,2,3...) is defined as:

. Sov S|l K

Sunljo)=[K M ] SWN SWN N [3.5.5.3]
ivN v || My

where, transfer functions Ky, My are calculated by AMP and noise source parameters (Swx, Sin, Yen) are derived from

Touchstone data:

SuuN(j(D):SWN‘KN|2+SU‘N|MN‘2+2RG(SivNK:\IMN) [3554]
SiiN:SiinN+|YL’N 2SWN [3555]
SivN: YCNSWN [3556]
SuuN(jU‘)):SiinN ‘MN|2+SWN|:‘KN‘2+|MN‘z‘YcN|2+2Re (YCNK;VMN)] [3557]
Noise factor is calculated as:
S S +S +..
NF =10log M =10log| 1+ e~ uul [3.5.5.8]
uuS(](D> uuS
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3.6. RF passive filter optimization example explained.

Summary: folder structure, sensitivities.

3.6.1. Folder structure.

Name Name n Name Name

sens_mc

sens_std

sce
sens_mc
sens_std

s in @ files @ in @ files

4 5 & 7 8 g 109 11

Fig.3.6.1.1. Folder structure of optimization example.

To run optimization use scilab scripts in sce folder. Other folders contain AMP source files with input/output files.
Design entry and results are in folders:

filter HQ - high Q filter desing
filter LQ - low Q filter design

Pattern-search optimization are in folders:

flp hg ps max sens - pattern search optimization MOD = high Q; err = PS MAX , OPT_SENS
flp_hg ps max_std - pattern search optimization MOD = high Q; err = PS_MAX, OPT_STD
flp_hg_ps_sum_sens - pattern search optimization MOD = high Q; err = PS_SUM, OPT_ SENS
flp hg ps_sum_std - pattern search optimization MOD = high Q; err =PS_SUM, OPT_ STD
flp_hg pts max_sens - pattern search optimization MOD = high Q; err =PTS MAX, OPT SENS
flp_hg pts max std - pattern search optimization MOD = high Q; err =PTS MAX, OPT_STD
flp_hg pts sum sens - pattern search optimization MOD = high Q; err =PTS SUM, OPT_ SENS
flp_hg pts sum std - pattern search optimization MOD = high Q; err =PTS_SUM, OPT_ STD
flp_lg ps_max_std - pattern search optimization MOD = low Q; err =PS_MAX, OPT_STD

Preferred numbers optimization are in folders:

pn_ps_max lel2 cel2 - preferred numbers optimization L:E12, C:El12, err = PS MAX
pn_ps_sum lel2 cel2 - preferred numbers optimization L:E12, C:El12, err = PS_SUM
pn_pts max lel2 cel2 - preferred numbers optimization L:E12, C:El12, err = PTS MAX
pn_pts sum lel2 cel2 - preferred numbers optimization L:E12, C:El12, err = PTS SUM

Sensitivity analysis are in folders:

sens_mc - Monte-Carlo sensitivity analysis
sens_std - differential sensitivity analysis
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Optimization and sensitivity analysis scripts are located in sce sub-folders. Each optimization sub-folder includes log
files.

bs\Amp\examples\ex6\sce \pref_numb; B [=] |

IEL Name Name Name

_log_pt

pn_ps_m

14 20:16

5 6 7 8 d

Fig.3.6.1.2. Folder structure of scilab sub-folders.

Scilab common functions are in examples\ sci folder.

bs\Amp\examples -

IEL Name Name Name

Folder 1.
s in 19 fi

4 6 7 8 9 a 11}

Fig.3.6.1.3. Common scilab folder.
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3.6.2. Sensitivities.

AMP calculates sensitivity Sx" of transfer function T due to a change of parameter X as:

r_X oT [3.6.2.1]
Y Tox o
Therefore, relative change of transfer function 8T can be expressed as relative change of parameter 8X times sensitivity
T.
X .
AT T oT X oT
0T= —|==AX =SToX 6.2.2
T (aX ) (T aX) 3022
When transf(er function T is) a complex function of real parameter X then:
oT _o(ITlexp(j o)) _allTl) 0(9)
= = +j|T 3.6.2.3
5% % aX exp( )+ j[Tlexp (o) 557 [3.6.23]
107 _ 1 a(ITI) o) [3.6.2.4]

ToxX || 0X 5y a X
Therefore relative change of transfer function module | T| can be expressed as relative change of parameter 6X times
real part of the sensitivity Sx" :

d|T|= A||T|| R(SL)OX [3.6.2.5]

and absolute change of transfer function phase Ao as relative change of parameter 6X times imaginary part of the
sensitivity Sx":

dp=3(S} )0 X [3.6.2.6]

In exploratory searching, rather than directly calculate new value of transfer function, sensitivities can be used to
estimate transfer function change:

T(X+AX)=T(X(1+8 X))~ T+AT= T+§_)T(AX T+TS 3 X=T(1+S,8X) [3.6.2.7]
AMP calculates sensitivities of voltage gain K,. Yet, for a filter in a test circuit:

s, =2K, [3.6.2.8]
thus:

Se=Sy [3.6.2.9]

Exploratory search can be calculated according to equation:
5, (X {148 X))|~]s, | +Als, = (55)8. X =|s,|(1+% (55 X) 3.62.10]
where X is element of a part value vector [L1,L.2,L3, C1,C2,C3,C4].
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